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The paper describes correlation measurements in both broad and narrow frequency 
bands of the longitudinal velocity fluctuations in fully developed pipe flow a t  four 
positions for a reference probe whilst a second probe was traversed radially from deep 
in the sublayer t o  a position near the axis with both longitudinal and transverse 
separations zero (Ax = Az = 0). Such measurements require that both the Covariant 
(Co) and Quadrature (Quad) correlations be determined for each of the 15 frequencies 
used t o  constrain the wave component A,. 

The new data demonstrate that low frequency, large scale turbulence fluctuations 
extend over the majority of the radial region and that these components are highly 
correlated. By using a similarity variable k,y, along with a normalized wall distance 
y/yREF, both correlation functions, i.e. the Co and the Quad components, are shown to 
collapse. The physical significance of this is discussed. 

The broad-band data do not collapse because of the large range of wave sizes. 
However, the present experiment does show that strong radial correlations exist even 
when one probe is a t  y+ = 1 .  This conflicts with the earlier data of Favre, but agrees 
with the more recent work of Comte-Bellot. There is a significant amount of turbulent 
energy in frequencies less than 16Hz (w+ = 0.008) for turbulent flows of about lo5 
Reynolds number. 

The spectral function wQ(w)  is also presented for a range of y+ values. Using this 
form for the power spectral density, along with the stochastic wave modelling and 
similarity arguments of this paper, it is shown how a consistent explanation for the 
behaviour of these spectra is obtained. I n  addition some preliminary results from cross- 
spectral analyses are presented and suggestions made as t o  their physical significance. 

1. Introduction 
Further experiments in turbulent pipe flow are described and structural inter- 

pretations given. The work involved extensive radial correlations both broad-band 
and frequency filtered and also the computation of various spectral functions of the 
longitudinal component u. Earlier work in the Department involved measurements of 
correlations of the u component in frequency bands with longitudinal or transverse 
spatial separations. Fourier transformation of these data produced two-dimensional 
power spectral densities a t  a particular yf location. Morrison & Kronauer (1969) 
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FIGURE 1. Pipe co-ordinates and wave schematic diagram. 

presented contour plots of these functions for a wide range of y+ and shear velocities U,. 
They successfully interpreted their data in the light of a stochastic wave model of 
turbulence with co-ordinates as specified in figure 1.  These co-ordinates are simply the 
result of rotating the x, z plane about the y axis through an angle a so that the (new) 
y, 5 plane is perpendicular to the wave fronts or lines of constant phase. Because of the 
symmetrical distribution of wave power in kz, right and left handed helical waves are 
equally strong. In the new co-ordinates, the measurable turbulent components are 

u = +2cosa+8sina 

and w = 8cosa-asina.  

They also proposed a scaling or similarity variable which requires turbulence features 
to collapse on wavenumber and wall distance as a product term ky, where 

k2 = kz+kz and a = tan-lk,/kS. 
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This allows the two-dimensional power plots to be written 

B(w+,  k+y+) = f (k+y+) A(w+, k;), (1) 

where f is the ‘wave intensity function’ and A is ‘wave strength’. These authors also 
laid the foundations for a mathematical treatment of the similarity theory in the ap- 
pendix of their paper. In  line with the Morrison & Kronauer presentation, Reynolds 
scaling has been used throughout this paper and hence the non-dimensional variables 
are 

Y+ = Y W V ,  kf = kv /v , ,  w+ = wv/ug, 

where U, is the usual shear velocity. In  the recent work of McConachie, Bullock & 
Kronauer (1977) the three-dimensional spectral function @(k,, k,, w )  has been obtained 
at a particular y+. This has led to an accurate definition of convection velocity C, as a 
function of wave size and similarity is substantially verified. 

Favre, Gaviglio & Dumas (1957, 1958, 1967) and Sabot & Comte-Bellot (1972) 
present contours of correlations with optimal time delay. Grant (1958) and Comte- 
Bellot ( 1969) made space-time correlation measurements of all three velocity 
components in a boundary layer. The structural interpretation of time-delayed 
correlations and data in the untransformed variables is difficult. 

Recent work by Perry & Abell (1975) shows that the similarity variable correlates 
the turbulent intensity (strictly a two-point correlation) across the Aow. Their work 
extends to one-dimensional spectra and an excellent similarity collapse is obtained. 
Their paper is particularly significant as it demonstrates that the true similarity region 
(i.e. where k y  scaling is applicable) can be expected only between y f  N 70-100 and 
y / a  = 0.1, a feature also implied by Bradshaw (1971). Our experience indicates that 
the region y+ = 50 to y / a  = 0.2-0.3 shows good similarity. This limited range means 
that low Reynolds number turbulence will probably not show similarity in the sense 
in which the term is used in this paper. Hence, care is needed in suggesting generalized 
theories from studies of low Reynolds number flows. There is evidence of a change in 
the turbulent structure at a low Reynolds number of about 30000 (Morrison et al. 
197 1) .  These authors were investigating two-dimensional spectra of the sublayer. 

Elliott’s (1972) atmospheric boundary-layer data indicate that not only u but also v 
and w show trends in agreement with Morrison & Kronauer’s (1969) hypothesis. The 
v component is independent of wave angle a since wave propagation is in a plane 
orthogonal to y ,  the direction of v components (see figure 1). Hence, it is the only 
component which by itself can be used to test the similarity hypothesis but unfortu- 
nately, it is also the hardest to measure close to a surface (McConachie & Bullock 1976). 

Tritton (1967) carried out extensive correlation measurements as functions of 
several combinations of all spatial arguments and time. Again, the use of untrans- 
formed variables renders interpretation difficult, but he deduced that the similarities 
between the wall and outer regions are more marked than the differences and that the 
description of the large eddies in the wall region as a coherent eruption from the 
viscous sublayer is unsatisfactory. 
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2. Data collection 
The data on which this paper is based were taken twice because the initial set showed 

effects which were at  variance with similar previous results, notably Favre et al. (1957, 
1958). Hence the original experiment was expanded and refined using different experi- 
mental equipment and an alternative technique of data analysis. Identical results 
were obtained. 

Generation of the correlations (both broad-band and frequency filtered) involved 
stationing two probes to measure u fluctuations in a circular tube. The probes were 
positioned at the same x and z locations and separated in the radial direction y .  The 
probe arrangement and mechanism were similar to those described by Morrison (1969). 

Flow Corporation anemometers were used (type CTA) and operated in constant 
temperature mode (resistance ratio 1.5). Wires were 2.5 pm diameter tungsten, 0.5 mm 
long. The wires were checked for straightness, parallelism and run-out on optical equip- 
ment in the Department's Metrology Laboratory before being installed in the tunnel. 

The d.c. outputs of the anemometers were used, ensuring that all low-frequency 
energy was retained. The fluctuating parts of the signals were then amplified with 
Preston wide band (10 kHz) floating differential amplifiers (model 8300 H) to bring 
them to acceptable levels for recording on the Hewlett-Packard F.M. 14-channel tape 
deck (model no. 3955C). Recording speed was 1.52m/s (60in./s). This speed was 
chosen so that correlation fidelity (i.e. phase shift less than 1.5" between channels and 
negligible distortion on any one channel) could be maintained to 5kHz. On each 
channel, the frequency response was from d.c. to 20 kHz. Hot-wire and equipment 
performance were monitored continuously. 

Using a friction velocity U, of 0.61 m/s (2-0ft/s), three reference y+ values were 
chosen, viz. 50, 100 and 300, and approximately 15 secondary yf values about each 
reference, defining the correlations from y+ = 1 out to y+ = 1500 ( y / u  = 0.57). Some 
correlations were also taken around a reference yf of 20. The tube diameter is 133.4 mm 
(5.25in.). 

3. Data processing 
In  line with most previous work in the Departmental laboratories, analog cross- 

spectral density techniques have been used rather than real-time correlation analyses. 
The correlation function R(T, Ax, Az, y l ,  yz) and the cross-power spectral density 
function @(o, IC,, kz, y l ,  yz) are of course a Fourier transform pair and neither contains 
more information than the other. However, our experience when dealing with broad- 
band turbulence data has been that more accurate results are obtained if at  least one 
of the troublesome Fourier transformation operations is by-passed, i.e. the time delay/ 
frequency transformation, A further compelling reason for remaining in frequency/ 
wavenumber space is contained in the product decomposition of equation (1). This 
corresponds to a convolution in the space-time domain, and it is extremely unlikely 
that any such relation would have been discovered (Morrison & Kronauer 1969). 
Furthermore, the spectrallwavenumber treatment leads on to the advanced theory 
of wave-wave interactions, the mechanism by which the whole equilibrium structure 
is maintained. This is expressed mathematically by the nonlinear terms in the 
Navier-Stokes equations. 
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FIGURE 2. Analog correlation circuit. 

However, this paper is concerned with the radial correlations only and rather than 
expand in the zigenfunctions of y as described by Lumley (1970), we have chosen to 
present the Co and Quad correlations for various frequencies. The data analysis was 
carried out on an EAT 231R analog computer. The analog components have been 
discussed by Morrison (1969) and acceptable accuracy is obtained from d.c. to 8 kHz. 
Broad-band and narrow-band correlations were computed by circuits such as the one 
shown in figure 2 where u1 and up are the two hot-wire turbulence signals. The analog 
notch filters are second-order active systems with transfer functions giving effective 
band-widths of 20 yo for all except the lowest of the centre-frequencies. 
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The correlation coefficients are calculated from the following formulae : 

where U*(Y, ,Wi)  = -%y2,wJ. 

The correlation magnitude and phase are given by 

R 3 4 1 ,  YZ, W i )  

RUU(Y19 Y27 W i )  
and 

In future we shall use a simpler notation, e.g. 

~ U U ( Y 1 ,  Y2, (4) = tan-l 

Rulu2(wi) = Ruu(Y1, ~ 2 ,  wi) .  

Two-point velocity correlations such as Rul uz(7) are not symmetric functions of T 
because the flow is non-homogeneous in y and thus the frequency transform is complex. 
Hence both the real part or in phase component of Muluz(wi) (the Covariant or Co- 
correlation) and the imaginary part or out of phase component of Mulu,(wi) (the 
Quadrature or Quad-correlation) must be measured separately at  each pair of displace- 
ments and for each frequency wi. The Quad-correlation is measured by shifting the 
phase of the filtered velocity signal uZ(wi )  by 90 degrees (u$(wi)) and correlating with 
the unshifted ul(wi) signal as indicated in (4a) .  For second-order filters the 90 degree 
phase shifted signal can be conveniently taken from the output of the second inte- 
grator in the filter circuit. The transfer function of this portion of the circuit is not ideal 
and shows some response at  d.c., namely 18 db down. Hence care is needed to remove 
any d.c. bias from the signals but at  the same time preserve all significant low frequency 
energy. To achieve this, high-pass input filters with a 0-08 Hz corner frequency were 
used. 

For the analysis described here, a bank of five pairs of filters plus the broad-band 
circuitry was used, and by replaying the tape deck at  152,86 and 38 cm/s successively, 
15 frequencies embracing all significant energy were analysed. 

The power spectral density cD(w), defined by 

m 

@ ( w )  = @ U l U l ( 4  = 1 ~ ~ ~ ~ ~ ( 7 )  exp ( - iw7) d7, (7) 
-m  

was determined from the filtered signals after calibration with a known spectrum 
following Walker (1971). The modified form of the power spectral density w@(w) or 
f @( f )  has been used in this paper because when the ordinate scale is linear, changes in 
spectral content and shape are more readily discernible and the area between any two 
abscissae on a logarithmic scale is the fraction of total signal energy contained between 
those two frequencies. The total area under the curve for normalized spectra must 
equal unity, providing a sensitive check on the accuracy of the analysis. 
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FIGURE 3. Broad-band correlations. 

Tape speed 

152 (cm/s) 
& 

w+ 
f 

(Hz) 
Effective filter frequencies 0.5 0.00025 

3 0.0015 
18 0.0089 

108 0.053 
648 0.32 

TABLE 1 

76 (cm/s) 
r--- 

Q + 
f 

(H4 

1 0.00049 
6 0.003 

36 0.018 
216 0.11 

1296 0.64 

38 (cm/s) 
+--7 

(Hz) w+ 
f 

2 0.00098 
12 0.0059 
72 0.035 

432 0.212 
2592 1.27 

The magnitude of the cross-power spectral density function is given by 

The phase of the correlation function, (6), is the same as that of the cross-power 
spectral density function. The normalization used in (8) ensures that the area under the 
wGulUZ(w) versus logw curves is unity (figure 13). 

The frequencies of the analysis are shown in table 1 ,  the first column being the real 
frequencies of the filters and the other frequencies being obtained by tape-deck speed 
changes. 

The proportional band-width (B, = n<) of the 0.5 Hz filter was 50 yo; for all other 
filters it was set at 20 yo. With 200 s integration time the standard error is 10 yo for the 
lowest frequency filter. Testing showed this to  be an upper bound on the error. Typical 
errors for all other filters were a fraction of one per cent. 
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FIGURES 4 (a, b).  For legend see facing page. 

4. Some new two-point correlations 
The broad-band correlations were presented in figure 3 while various sets of the 

filtered functions are shown in figures 4(a ) ,  ( b )  and ( c ) .  
The broad-band correlation functions in figure 3 indicate that a substantial level of 

correlation exists throughout the shear layer in pipe flow, significantly higher than that 
reported by Fame et al. (1957, 1958) for flat plate boundary layers. Except for the 
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FIQURE 4. (a) Filtered Co-correlations for yiEp = 50. Filtering frequencies as marked (€32). 

f (Hz) W+ f (Hz) W+ 

1 0.00491 2 16 0.106 
18 0.00885 432 0.212 
36 0.0177 648 0.318 
72 0.0354 1296 0.637 

108 0.0531 2592 1.274 

(b) Filtered Co-correlations for yiEp = 100 and 300. Filtering frequencies as marked (Hz). 
f (Hz) W+ f (Hz) W +  

36 0.0177 216 0.106 
72 0.0354 648 0.318 

108 0.0531 

(c) Filtered Quad-correlations for yzEP = 50, 100 and 300. Filtering frequencies as marked (Hz). 

300-- -  36 0.0177 
100 ...... 72 0.0354 
50 __ 108 0.0531 

Y t P  f (Hz) w+ 

216 0.106 
648 0.318 

1296 0.637 

region yf < 5 ,  where the correlations are independent of yf, it  is not possible to define 
the conventional Aow regions of buffer layer, log region, etc., from the behaviour of 
the correlation coefficients with yf. The reason for the high broad-band correlation co- 
efficients is evident when the correlation data are presented as a function of frequency 
(figures 4 (a), ( b ) ,  ( c ) ) .  Figure 4 ( a )  contains data covering the entire frequency range and 
is typical of the data available at  yREF of 100, and 300 for which only a subset is pre- 
sented in figure 4 ( b ) .  The Go-correlation values for f = 1 Hz, y+ = 1 and yLEF = 20,50, 
100 and 300 are 0.96, 0.95, 0.92 and 0.84 respectively, and the Quad-correlations are 
measured at less than 0-1. The low frequency components are highly correlated and in 
phase or nearly so over most of the 'boundary Iayer '. As the frequency increases the 

20 FLM 88 
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total correlation MuIu,(u) falls off and the phase angle begins to become noticeable as y 
separation increases. There is no sharp boundary between the low frequency and 
intermediate frequency behaviour ; however, for purposes of discussion 36 Hz can be 
used as a boundary. At 36 Hz there is a noticeable phase for yAEF = 300 as shown by the 
Quad values in figufe 4 (c) .  At the same frequency but yAsF = 50, the Co is 0.85 and the 
Quad is of the order of - 0.05 a t  y+ < 10. 

These observations imply that the inner regions of the boundary layer are highly 
correlated with each other and are in phase, i.e. high Co and low Quad-correlation, 
especially over the lower frequency portion of the spectrum. It appears that the Iongi- 
tudinal velocity u ( y ,  t )  = A(t )  f ( y ) ,  especially for the low frequencies. Previous experi- 
mental evidence for this view is contained in Abernathy’s boundary-layer film (1969), 
where it can be seen that the velocity profile in the sublayer region appears as a straight 
line with time-varying slope, Additionally, Grass ( 197 1) noted that the instantaneous 
velocity profiles seemed to oscillate randomly about some average profile. Oscillations 
did not take the form of local spikes on the mean profiles, but exhibited strong corre- 
lations over large portions of the visible flow depth. 

The Quad-correlations for the lowest frequencies are not presented in figure 4(c) 
because they are generally of low magnitude. However, the Quad at  f = 36Hz for 
yAEF = 300 is roughly constant at  about 0.35 for y+ < 50 and the Co-correlation is 
approximately 0.43 for this region. It may be that this portion of the shear layer 
(yf < 50 and f < 36 Hz) is responding to large scale log-layer fluctuations. Leslie (1973) 
commented from a fundamental consideration of the Navier-Stokes equations tha t  
the log-layer is a self-consistent, self-sustaining turbulent phenomenon calculable 
without reference to the inner (viscous) and outer flows into which it must merge in 
any real situation. Hence, the sublayer can be thought of simply as the necessary 
boundary conditions on the velocity components. In  this frequency regime the 
sublayer is being driven by the outer flow; nevertheless there may still be a feedback 
mechanism operating between the inner and outer layers, the coupling being provided 
by the momentum interchange process. However on physical and experimental 
grounds (e.g. rough and smooth wall log-region velocity profiles are expressible by a 
single equation) it may be argued that the coupling probably decreases as Re increases. 
If the properties of one region are changed, the entire coupled process can be signifi- 
cantly altered. The drag reduction property of dilute solutions of long chain polymers 
in water is an example where changes in the sublayer response affect the flow, as noted 
by Paterson & Abernathy (1972) and Bertschy gt Abernathy (1977). The viscosity of 
polymer solutions is strongly strain rate dependent. Thus the kinematic viscosity of the 
sublayer is increased while that of the bulk of the fluid is essentially unchanged. 

The next frequency range of interest in the correlations extends from f > 36 Hz to 
f x 400 Hz. Again the frequency boundary is not well-defined but is characterized by 
a significant decrease in the Co and an increase in the magnitude of the Quad-corre- 
lations with lateral separation of the measuring points. It should be noted that the 
sign of the Quad-correlations in figure 4 ( c )  is such that the signal at the outer y+ station 
leads that of the measuring point closest to the wall. Momentum interchange between 
the inner and outer flow would involve stretching of fluid elements and is consistent 
with this observation. Indeed the spectral measurements of Bremhorst & Walker 
(1973) show that the major portion of the energy is concentrated in this frequency 
band throughout the ‘ boundary layer ’. 
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FIGURE 5. Effect of input filter cut-off frequency on broad-band 
correlations around yRfF = 100. 

The correlation data presented in figures 3 and 4 differ significantly from those 
generated by Fame et al. (1957, 1958). Favre’s data fall off steeply to values of 0.1 near 
the wall. Figure 4 shows, on the other hand, significant asymptotic values of the 
correlations as the wall is approached. Favre’s experiments were in a flat plate 
boundary layer and not in fully developed pipe flow. Tritton (1967), however, con- 
cluded that his experiments gave no indication of any difference in the large eddy 
structure in the wall regions of boundary-layer and channel flow turbulence. Hence, it 
seems possible that Favre’s data did not extend to low enough frequencies and so 
contributions from these well-correlated components have been lost. The effect of 
higher cut-offs in the input high-pass filter is shown in figure 5. The present data agree 
with those of Comte-Bellot (1969) in channel flow. 

5. Collapse of the data 
The two-point space-time correlation description of a general turbulent flow field 

involves functions of the six dependent variables (uu, uv, vw, etc.) in the eight inde- 
pendent variable space. Hence the uu correlation with full arguments would be 

(9) 

However, in fully developed turbulent pipe flow stationarity in time ( t )  and homo- 
geneity in the two spatial variables x and z allow the use of increments rather than 
absolute values, viz. 

RUl% = RUU(X1, x2, Yl, Y 2 , Z 1 ,  22, t l ,  t z ) .  

~2 - x1 = AX,  

~ 2 - 2 ~  = AZ 

and t l - t 2  = At = 7. 

Hence, RUIU2 = RUU(AX’Y1, Yz, AZ, 7 ) .  

Ru,uz = RUU(Y1, Y z ,  7 ) .  

In the present experiments Ax = Az = 0 and so 

(11) 
10-1 
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Frequency filtration automatically generates functions in the transform of the time 
variable, viz. w .  Therefore 

R U 1 U z  = Rudy,, Y29 01, 
and is the experimentally determined spectral correlation coefficient. 

Morrison & Kronauer (1969) showed that frequency filtering constrains k,. The 
convection velocity C, is approximately equal to the local mean velocity in the log and 
outer Aow regimes in fully developed turbulent pipe flow and k, = w/C,. Any variation 
in C, is small when compared with the three orders of magnitude in the energy spectrum 
of u. It is required by similarity that the A functions (1) be independent of angle a, 
a requirement shown to hold quite well in the data of Morrison & Kronauer. This is 
equivalent to the proposition that a wave correlated in y would propagate throughout 
the boundary layer a t  the same angle a. Since k = k, cosec a, correlations should there- 
fore collapse on the more easily measured variable wy (roughly equivalent t o  kzy). 
Rigorous construction of ky requires simultaneous measurement of Ax, Az correlations 
and subsequent Fourier transformation of these extensive data. 

The similarity hypothesis thus suggests that the correlation coefficient Ruu(yl, y2, w )  
may be reduced to  dependence on two dimensionless parameters so that 

Rulua = Ruu(Y$/Y,+, W+Y,+). (13) 

Designating y1 as yREF the final equation requires that correlations plotted as a 
function of yZ+ /ykEF with w+y,t,, = a constant should fall onto a single curve. 

Figure 6 shows the similarity correlation of data for some values which fulfil the 
conditions required above and the collapse is quite good. The deviations increase as the 
wall is approached. This is expected since these are the regions below the log-layer 
where the ratio of kinematic to  eddy viscosity is high and the convection velocity C, is 
not equal t o  the mean velocity (Morrison et aE. 1971). It is interesting that the collapse 
extends toy+ ,< 50 positions since these are subject to  an intensity correction procedure 
(Morrison & Kronauer 1969). This reinforces the previous comments that the log- 
layer eddies are independent of the wall even when they extend well towards it. The 
collapse is also good beyond the theoretical similarity limit, namely y / a  = 0.1 or 
yf = 260, confirming earlier comments about these limits. 

Since AZ separations have not been used the present correlations are integrals over 
all k, and hence contain a range of wave sizes, h = 2n/(k: + kz)a. However, the k,@(kz) 
spectra are much narrower (about 14 decades) than the w @ ( w )  spectra (which cover 
almost four decades). Hence frequency filtering along with wall distance is constraining 
wave size very effectively. 

The similarity plot of Quad data (figure 7) is good even though the generation of 
Quad-correlations using second-order filters leaves something to  be desired, and the 
r.m.s. values of the signals being correlated are much smaller, causing any system 
inaccuracies to  be more significant. 

If the Co and Quad-correlations are used t o  generate magnitude and phase informa- 
tion as described earlier, the overall correlation Mulu,(w) thus obtained collapses as 
well as the original curves (see figure 8 which should be compared with figures 6 ( b )  and 
7(b). Figure 9 shows the phase data plotted as a function of y2/yREF for the three 
constant w+y& values, namely 5.3, 10.6, 31.8. 

For clarity and comparison purposes we have shown the three curves as a composite 
(figure 10). Three features are evident. 
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(1) The phase gradient is larger for increasing values of the similarity variable, 
~ + Y & E F .  

(2) The curve for the lowest u+yftEFand y+/yREF < 0.1 tends towards the asymptotic 
behaviour of the Co and Quad-correlations of figures 4 and 5 ,  as previously discussed. 

(3) At the highest value of w+yiEE. there is evidence of a phase jump occurring a t  a 
y/y,EF = 2. The value of w + ~ & E F  is 31.8 and recalling that w+yiEF = U+(yREF) k$y&EF 
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FIGURE 7. Similarity plot - Quad-correlations for w+y& = constant. 

(a) w+y& = 5.3 (b) wfy& = 10-6 (c) ~ + y & ~  = 31-8 

50 216 0 0.106 432 0 0.212 1296 0 0.637 
100 108 0.0531 216 0.106 648 0.318 
300 36 [7 0.0177 72 0.0353 216 0 0.106 

Y i E F  c---h--7 - w 

we deduce that k$ygEF z 2. Thus the phase jump occurs a t  k f y +  21 4 .  This has 
been observed by Elliott (1972) in his phase data taken in the atmospheric boundary 
layer. 

Morrison & Kronauer (1969) deduced that the peaks in intensity ofthe 42 and z2 waves 
are at  k+y+ = 0.6 and 2 4  respectively. These values correspond to the critical layer 
(where wave speed matches the mean velocity) and the centre of the wave system 
respectively (figure 1). Hence these phenomena are interpreted as being consistent 
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FIGURE 10. Similarity curve of phases for three values of (~)+y&~. - - -, W + Y : ~ ~  = 5.3; 
- - -, (L)+Y&~ = 10.6; - , w+yizF = 31.8. 

with the stochastic wave model where the contributions from the Q and ?2 components 
vary with y. The phase jump and high phase gradient must therefore be phenomena, 
whilst the lowest w+y+ curve reflects the effect of the wall and is typical of t2 behaviour. 

6. Spectra and similarity 
The power spectral density functions measured for the u component as a function 

of y+ for the pipe flow investigated in this experiment are shown in figure 11. The 
following general features may be observed. 

(1) Spectra in the sublayer and buffer layer change only slowly and can be collapsed 
by viscous scaling (Morrison 1968). 

(2) In the vicinity of y+ = 40 an increasing amount of low frequency energy can be 
observed. 

(3) In the region 200 < y+ < 500, this low-frequency hump predominates. In the 
region 70-500, this forms the well-known k-l region which can be deduced, not very 
rigorously, from inner-layer scaling arguments. 

(4) From y+ = 400 and onwards, a steady decrease in the low frequency energy is 
observed and there is a shift up towards the previous sublayer frequency. 

From such spectral curves some researchers have conjectured that a dual mixing 
process is a t  work in the boundary layer. Each stage of the process has its own 
frequency which is the same throughout the boundary layer, the variation in the 
spectrum resulting from the variation in importance of each process at  different 
positions, y+, in the boundary layer. However the authors wish to suggest an inter- 
pretation based on the stochastic wave model. 
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,f(Hz) 
FIGURE 11. u spectra for U,  = 0.62 m s-I (2.04 ft). 

Assume it was possible to measure the spectra of the natural wave components a and 
i2 (figure 1) .  The critical layer for the 6 component is given by ky _N 0.6 while the peak 
intensity of the i2 component is further out at ky N 2.4. Hence y is effectively a filter 
on the wave size and so the spectrum obtained (for the 6 natural wave component) 
would be a mirror image of the intensity curve, i.e. with a peak at the k corresponding 
to ky = 0.6. The same comment applies to the u3 spectrum only now, for the same y, 
the peak in k will be shifted to  higher wavenumbers. 
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In fact it is not possible to measure the Q and 8 spectra. The measurable u com- 
ponent is 

which squared gives 

u = .dcosa+8sina, 

u2 = 42 cos2 a + 2&8 cos a sin a + Q2 sin2 a. 

The measured u spectrum is therefore a mixture of the spectra of .d and 8, and their 
cross spectral density as well, integrated over all angles a. 

There is not, as some authors have suggested, a large amount of sublayer size disturb- 
ances propagating out to y+ = 1500. The sublayer structure and waves observed up 
to y+ = 400 are strongly elongated in the x direction. In  fact, the inclination of lines 
of constant phase to the stream direction is about go to 10". Morrison's (1969) data 
showed that waves with large inclination (increasing amount of 8) have their u' peak 
much further out (about 4 times further out in ky). Hence what these spectral data 
are displaying at  y+ > 400 are waves of large inclination, probably 45" to 60". This angle 
dependence can be shown by taking Az correlations. The wavenumber k of any dis- 
turbance seen through u' data for small a depends almost entirely on kB. However, for 
large a the wavenumber is more dependent on kz or w (which is roughly equivalent). 

Thus the spectral data of figure 11 show the predominance of the .d velocity com- 
ponent in the sublayer and a transfer to the 8 component in the core regions of the 
flow as the wave inelinatmion angle a increases with y. Experimental evidence both in 
Morrison & Kronauer (1969) and McConachie (1975) shows that the proportion of 8 
increases with increasing wall distance. The peak in Q occurs at a k+y+ = 0-6 or 
w+ = 0*6C+/y+ while that for 8 occurs at  2*4C+/y+. Now Morrison et al. (1971) have 
shown that the convection velocity (i.e. C$ = C+/sina) is virtually constant in the 
sublayer regions, Thus as y+ decreases, the energy spectral peak as shown with w+ 
as abscissa must increase and is limited only by viscosity. At y+ stations in the log 
layer the spectral peak would be expected to move to lower and lower values of w+. 
However, this is countered by two phenomena: first, the increases in C$ (which is equal 
to U+ for all energetic components) and sin a, since U+ and a (the angle of propagation) 
each increase with y. Second, and possibly the more important phenomenon, is the 
shift of the power from Q to 8 components as the wall distance increases. 

For lower Reynolds numbers, the low frequency peak does not occur and it ap- 
pears as if sublayer disturbances are propagating right through to the core region. In 
fact what is occurring is that the .zi and 8 peaks are so close together as to be in- 
distinguisha,ble since the range of permissible wave sizes is strongly Re dependent. 

Attempts were made t o  synthesize the spectra of figure 11. Various combinations of 
Gaussian signals with added periodic components invariably yielded a spectrum which 
was far too sharply peaked. Some theoretical correlation functions with specific 
properties such as zero slope a t  the origin were also tried but again the resulting 
spect,ra were too narrow. Success was achieved only with a combination of three 
spectral functions, each spectrum being that of a Gaussian distributed signal. (Log 
region turbulence signals are Gaussian or very nearly so.) Such a signal may be 
mathematically described as white noise filtered once and has a spectral function 
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FIGURE 12. Simulated spectra for U, = 0.61 m s-l (2  ft). 

where w, is the corner frequency ( - 3 db) of the low-pass filter. This is a symmetrical 
bell-shaped function with a peak value of 0-32 a t  w / w ,  = 1-0. The three spectral 
functions t o  be combined are of course the postulated spectra of Q2, 68 and 8, as 
given in (15). Hence for a particular y+ 

(17) w@uJo) = A,o@,-,-(w) +A,o@g&J) +A3W@f3&J) ,  

W@i&J) =; 7 

2 [  wwIu 1 where, for example, 

andA,+A,+A, = 1.0. 
The choice of w~ and w~ may be made by considering the ratio of the location of the 

peak values of the similarity intensity functions, viz. k+y+ = 0.6 for 6 waves and 
k+y+ = 2 4  for 8 waves. I n  spectral terms the frequencies of the peaks will be 

+ 0*6C$sina,- +, - 24C$ sin E~ 

It has already been shown that low-frequency components of u' are predominantly 
6 waves propagating a t  about 6-10" while higher frequency components contain a 
significant amount of 8 waves travelling a t  angles of 45"-60". Thus wd/w3 z 16-17. 

It was assumed that the cross-spectral component would be centred around the 
arithmetic mean of the 6 and 8 frequencies. 

The results of the above synthesis are shown in figure 12. The effect of y+ was 
simulated by varying the proportions o f 6  and 8 spectra (A, and A3) entering into the 
composite while the amount of cross-spectral component (A, )  was kept constant a t  
0.1. The correspondence between the simulated and measured spectra is additional 

oq = and o w -  
Y+ Y+ 
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confirmation of the wave model. Furthermore this concept agrees with the well known 
fact that the spectra of the natural wave component v is single peaked. 

Some cross-power spectral density curves are shown in figure 13. The data of both 
y+(4, 100) and y+(20, 100) of figures 13 (a) and ( b )  are particularly interesting as the 
energy distribution for u' at a y+ of 4 and 20 is single peaked while that for y+ = 100 is 
double peaked. However, the cross-spectral functions of fG, f )  and fG,, f )  reach 
a maximum value at the low-frequenc y, log-region component of the longitudinal 
turbulence intensity. Thus the apparent transfer of energy across the radial separation 
occurs a t  a frequency which is controlled by the propagation of the waves in the 2 
direction with small angles a, 6-10'. This propagation, by interacting with the mean 
velocity as depicted in figure 1, produces components whose size is determined chiefly 
by A,. The components of velocity in the x direction are of small wavenumber (large A,) 
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longitudinal fluctuations in velocity. 
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by virtue of their small angle of intersection with the mean flow direction. In  the 
traditionally accepted buffer and inner-log regions, the waves also cut large gradients 
in the velocity profile producing significant turbulent energy, i.e. the region of maxi- 
mum intensity (y+ = 25). These waves are highly correlated across the radial distance 
and this gives rise to the seemingly unusual fact that the energy transfer occurs in a 
frequency range where the energy density is fairly low in the near wall positions. 

Proceeding outward from the wall, the two spectra merge and the cross-power 
spectral peak moves progressively to lower frequency and at  the same time the cross- 
spectrum is reduced in band-width. Similarity states that the scale of turbulence is 
proportional to the distance from the wall. Hence this shift in the peak with wider 
probe separations, e.g. (100,700) compared with (100,200), is to be expected as the 
larger scales of turbulence assume greater importance with increasing wall distance. 

The correlation magnitudes, Mulu2(f) (equation 5) are also shown in figure 13. This 
function decreases rapidly with frequency after the peak in the cross-spectral power is 
passed. Although the correlation for low-frequency components is high for all y posi- 
tions tested, there is very little energy transfer at a frequency of 1 Hz (w+ = 0.00049). 
In addition, the limit on the transfer of energy a t  the high-frequency region is probably 
governed by the decay in the correlation curve. This is a result of the decreasing size of 
the waves selected at  higher frequencies. 

Thus the concept that the stream function (figure 1 and the appendix of Morrison & 
Kronauer 1969) produces v and z2 components which in turn act on the mean velocity 
to pump i2 components of very large scale into the system is supported by the phase 
information of figure 9 (which is also the phase of G(w))  and by the cross-spectra and 
correlation magnitudes of figure 13. 

7. Conclusion 
From these measurements and related data there is emerging a coherent picture of 

the turbulence structure in the logarithmic region summarized in a similarity hypo- 
thesis which requires turbulence features (inclusive of others not discussed in the 
present paper, such as ZZuv] to scale on wavenumber and wall distance &0 &product 
term k, y. Concurrent with this scaling argument has been the use of a stochastic wave 
description of the fluctuating velocity components and a reduction in the dimen- 
sionality of the functions describing the phenomenon of turbulence. 

The data demonstrate that large scale turbulence (small IC,) extends over a large 
radial region and that all these components are highly correlated. The correlations 
assume asymptotic values as the wall is approached. This behaviour would imply that 
these regions are 100 yo correlated with each other and are in phase. This agrees with 
the National Science Foundation films of Abernathy and with other experimenters, e.g. 
Grass. The validity of the similarity predictions has been demonstrated in the collapse 
of both the correlations and the phase angles as functions of the y/yREF variable even 
though the experimental generation of the phase data was not ideal. 

The broad-band correlation data do not collapse because of the large range of wave 
sizes due to the lack of control on ZC,. They do, however, emphasize that significant 
correlations exist over a large radial extent. Even for a fixed probe at a y / a  of 0.12 
the correlation is significant in to y+ = 1. This result conflicts with the earlier data of 
Fame et al. although it agrees with Comte-Bellot’s results. There is a large amount of 
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energy at  frequencies < 16 Hz and it is possible that earlier experiments suffered from 
a loss of low-frequency, highly correlated, energy. In  addition it is not possible to 
discern the traditionally accepted flow regions by examining these correlations alone. 

The present measurements support the idea that the viscous regions are controlled 
by low-frequency log-layer fluctuations. In an attempt to determine the equivalent of 
an identification of the propagation of the longitudinal turbulence in the radial 
direction, cross-power spectral density functions were also determined for various y+ 
locations and an interpretation is given. The turbulence detected by the outer probe 
leads that measured by the inner probe for all components. 

Accurate power density spectra covering 4 decades of frequency are also presented, 
and analysed in the light of the similarity model which is the theoretical basis of this 
paper. The analysis represents a unified explanation of the spectral shapes which have 
been the subject of numerous speculations in the past. 

This new comprehensive set of data over a large radial extent gives additional 
support to the Morrison ,& Kronauer similarity hypothesis and to the wave model 
described by Morrison et al. (1971) .  It is emphasized that much further careful experi- 
mentation is needed to define fully the complex relationships which exist. However, 
the present results have given valuable insight into the structure of pipe turbulence 
when interpreted in a physically consistent manner. 

Professor R. E. Kronauer, of Harvard University, has in his many personal 
communications on wider aspects of the work of the Department in turbulence 
contributed greatly to this particular work. 

The work has been carried out under the auspices of the Australian Research Grants 
Committee, which was responsible for the provision of salaries for Mr R. E. Cooper and 
for the financing of Professor Abernathy’s visit to Queensland. 
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